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ABSTRACT 

Let h be  t h e  Hausdor f f  d imens ion  of  t h e  Ju l i a  se t  J(R) of  a Mis iurewicz ' s  

ra t ional  m a p  R : C ---, C ( s u b e x p a n d i n g  case). We prove t h a t  t he  h -d imen-  

s ional  Hausdor f f  m e a s u r e  H~, on J(R) is finite, posi t ive and  t he  only  h- 

conformal  m e a s u r e  for R : C ---, C u p  to a mul t ip l ica t ive  cons t an t .  More-  

over, we show t h a t  the re  exis ts  a un ique  R- invar ian t  m e a s u r e  on J(R) 
equivalent  to Hh.  

1. In t roduc t ion  

Let R : C --* C be a rational map of degree > 2 on the Riemann sphere equipped 

with the spherical metric. Denote by J(R) the Julia set of R. It is well known 

that the Julia set J(R) is non-empty, perfect and fully invariant, which means 

that 

R-I(J(R)) = J(R) = R(J(R)). 

Moreover, J(R) is the closure of periodic sources of R and RIj(R ) is topologically 

exact. For the definitions and basic properties of rational maps and their Julia 

sets we refer to Brolin ([3]), Slanchard ([2]) and Devaney ([4]). 
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In this paper, like in [1], [5], [6], [71, [8] and [161, we investigate relations 

between Hausdorff and conformal measures on Julia sets. 

The definition of conformal measures for rational maps was first given by Sub 

1ivan (see [14]) as a modification of the Patterson measure for limit sets of Fuch- 

sian groups (see [12]). Let t > 0. A probability measure m on J(R) is called 

t-conformal for R : C --* C if 

m(R(A)) = fA IRT dm 

for every Borel set A C J(R) such that RIA is injective. A more general definition, 

showing the connection to ergodic theory, has been given by us earlier (see [7]). 

It follows from topological exactness of RIj(R) that a conformal measure rn is 

positive on non-empty open sets and therefore 

(1.1) M(r)  = inf(m(B(z, r ) ) :  z • J(R)} > 0 

for every r > 0. 

Let (X, p) be a metric space, let t >_ 0 and let A be a subset of X.  The outer 

t-dimensional Hausdorif measure of a set A C X is defined by 

o o  

H,(A) = ~im (inf  Z ( d i a m ( U i ) ) ' )  
j=o 

where the infinium is taken over all countable covers {Uj} of A by balls in X of 

radii not exceeding r. The Hausdorif dimension HD(A) of A is defined to be the 

infimum of all s so that H,(A) = 0. 

Denote by N(A, r) the minimum number of balls in X with radii not exceeding 

r which are needed to cover A. The lower and upper box dimensions of A are 

defined by 

log N(A, r)  
bD(A) = lim inf log N(A, r) and b--D(A) = lim sup .--:---- 

r--,0 - log r r--*0 - log r 

respectively. If bD(A) = bD(A), this common value is denoted by bD(A) and 

called the box dimension of A. 

It is easy to check that any positive and finite t-dimensional Hausdorff mea- 

sure on the Julia set J(R) is t-conformal (after normalization of course) but  not 

necessarily conversely and in fact the relations between Hausdorff and conformal 
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measures and between Hausdorff and box dimensions of J(R) depend heavily on 

the type of rational map under consideration. In the expanding case all basic 

problems are solved, mostly due to Bowen and Sullivan. Let h = HD(J(R)) 
denote the Hausdorff dimension of the Julia set of an expanding rational map R. 

Then the h-dimensional Hausdortf measure Hh on J(R) is positive and finite, and 

(after normalization to Hh(J(R))  = 1) it is the only h-conformal measure. More- 

over, there axe no t-conformal measures with t ~ h, and there exists a unique 

R-invariant probability measure p on J(R) equivalent to HA. p is the unique equi- 

librium state for the function - h  log IR~I and satisfies h~,(R) - h f log [R~I dp = O. 
Hausdorff and box dimensions are also equal (h = bD(J(R))) .  

In [1], [5], [6] and [8] we have dealt with parabolic (expansive but not ex- 

panding) rational maps. For t > h = HD(J(R)) there exists a t-conformal 

measure, always purely atomic if t ~ h, and there are no t-conformal measures 

for t < h. There exists exactly one h-conformal measure which is nonatomic, 

equal to the normalized h-dimensional Hausdorif measure for h _> 1 and equal to 

the h-dimensional packing measure for h < 1. Moreover, there exists an invariant 

measure equivalent to the h-conformal measure, either finite or a-finite. 

In the general case of a rational map (when the Julia set contains a critical 

point) we dealt with the question of determining h by the existence of conformal 

measures in [7]. In some special cases (including subexpanding rational maps) 

we showed that  there are t-conformai measures satisfying h _> t. 

In this paper we study a special class of rational maps for which the Julia 

sets contain critical points, hut, on the other hand, which behave very much like 

expanding maps. These maps are defined as follows: A rational map R : C --* 

is called a Misiurewicz's rational map (or subexpanding) if the restriction 

of R to the intersection of the Julia set J(R) and the w-limit set of critical 

points of R is expanding with respect to the spherical metric on J(R). This 

definition can be found in [10] and is analogous to a corresponding definition for 

maps of the interval by Misiurewicz. We shall prove that  there exists exactly 

one h-conformal measure m and m is equivalent to the h-dimensional Hausdorff 

measure on J(R) with constant Radon-Nikodym derivative. Moreover, there 

exists a unique, ergodic, R-invariant probability measure equivalent to m, and 

the Hausdorff and box dimensions are equal. All these results are contained in 

Section 4. 

The strategy of our approach is the following. First, basically repeating ar- 



196 M. DENKER AND M. URBAI~ISKI Isr. J. Math. 

gmnents from [16] and [5], we show that if m is a t-conformal measure then 

Ht << ra with bounded Radon-Nikodym derivative. The important  step in the 

present proof is the following (essentially Lemma 3.7 in Section 3): If m is a 

nonatomic h-conformal measure then m << Hh with bounded Radon-Nikodym 

derivative. It is this fact which makes the subexpanding case similar to the ex- 

panding one, and which is not true, for example, in the parabolic case. Using 

the construction of conformal measures in [7] we then prove the existence of a 

nonatomie h-eonformal measure. These informations are sufficient to conclude 

that  O < Ha(J (R))  < oo and h = bD(J(R)) .  

The existence and uniqueness of an R-invariant probability measure equivalent 

to Ha has been proved in [10] under the assumption that J(R)  = C. In this ease 

h = 2 and Ha is up to a multiplicative constant the Lebesgue measure on C. Since 

the same proof works in our general case we obtain the existence and uniqueness 

of an R-invariant equivalent probability measure and an immediate consequence 

is the uniqueness of the h-conformal measure. 

All distances and derivatives appearing in this paper are considered with re- 

spect to the spherical metric on C. However, to keep our exposition more readable 

we use Iz - Yl for the distance between V and z. A ball of (spherical) radius r 

around z e C (resp. A C C) will be denoted by B(z,  r) (resp. B(A,  r)). 

The following version of the K~be Distortion Theorem (see [11], comp. [16]) 

will be used several times. 

KOBE DISTORTION THEOREM (KDT): Let ~ > O. Then there exists a function 

k, : [0,1) ~ [1, oc) such that for any V, z E C, r > 0, t E [0,1) and any univa/ent 

analytic function H :  B(z,  r) ~ C \ B(V, ¢) we have 

sup{IH'(x)l : x ~ B ( z ,  t r ) )  <_ k , ( t ) i n f { I n ' ( z ) l  : x ~ B ( z ,  tr)} .  

For brevity we refer to this theorem as KDT, we put k = kl/2 and K = 

ka/2 (1/2). In later applications we only consider families of holomorphie inverse 

branches of positive iterates of rational functions defined on some open balls of C. 

Although it is not indicated later on, the radii of these balls are always assumed 

to be so small that the following conditions are satisfied. 

First, one assumes the radii to be so small that at least three different periodic 

cycles lie outside of the ball considered. Then, if necessary, one uses Montel's 

theorem and passes to a ball of suitably smaller radius so that the assumptions 
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of KDT are satisfied with e = 1/2 for all inverse branches in the family under 

consideration. 

2. Preliminary results 

Let R : C --* C be a rational map of degree d > 2. Denote by Crit(R) the set of 

critical points of R and by CV(R) = R(Crit(R)) the set of critical values of R. 

In this section we collect a few simple lemmas which will be needed in Section 3. 

LEMMA 2.1: For every e > 0 there exist 0 < a(e) < e and ~(e) > 0 such 

that for every z ~ B(Crit(R),e) the restriction RIB(z,,,(c)) is injective and there 

exists a unique holomorphic inverse branch Rz  1 : B( R(z),3(e) ) --* C satisfying 

R 7 1 ( R ( z ) )  = z .  

The proof of this lemma is evident. The existence of a(e) is completely obvious. 

For fl(e) one can take einf{IR'(z)[ : z q~ B(Crit(R),e - a(e))}. 

The next lemma can be found in [10], for example. For completeness we repeat 

here its short and simple proof. 

LEMMA 2.2: Ve > 0 VA > 1 30 = 0(e,A) _< min{a(e),fl(e)} such that the follow- 

ing holds: If  n > 1 is an integer and z E C such that 

{z, R ( z ) , . . . ,  R " - ' ( z ) }  C C \ B(Crit(R),  e) 

and IR'(R~(z))I >_ A for every j = 0 , 1 , . . . , n  - 1, then there exists a unique 

ho~omo~hic inverse branch R T " :  B(R"(~) ,  20) -* ~ such that RT"(R"(~))  = z. 

Moreover, for any 6 < 28 

R-in(B(R"(z), 5)) C B(z, 6). 

Proof: Take t E (0,1) so small that  A -1 k(t) < 1, where k(t) is the function 

given in KDT. It follows from Lemma 2.1 that for every j = 1, 2 , . . . ,  n there 

exists a unique holomorphic inverse branch R~-x: B(Ri(z) ,  3(e)) ~ C satisfying 

R71(Ri(z)) = Ri-~(z). Hence, in view of KDT, 

,R71 (B(RJ(z), tfl(e))) C B(R j-1 (z),)~-1 k(t)tfl(e)) C B(R j - l (z ) ,  tfl($)) 

and therefore the composition 

//71 o R71 o . . -  o R~ 1 
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is well defined on B(Rn(z) ,  t/~(e)) and satisfies R 7' o p - I  o . . . o  R~ 1 (Rn(z))  = z. 

Putting 
. I  

=2t//(e) and R7 n=R~ -loP-lo.-.o 0 

the proof is finished. II 

The next lemma is also quite obvious and stated without proof. 

LEMMA 2.3: Let (X, p) be a metric space and let u be a Bore]probability measure 

on X. Fix z E X and a > 0. Assume that there exist (71, C2 > 1 and ,0 > 0 

such that for a//0 < r < r0 

3rl < CI, 3r2 > C11r so that 

(2.z) v(B(x, .1))  > C f ' .  ~ a .d  v(B(~, .2))  < C2. ~. 

Then 3Cs >__ 1 VO < r _< 1 

c~-' < v(~(~,,))  < c~. 
r a 

LEMMA 2.4: Let m be a t-conformM measure on J(R) and let z 6 J(R). Let 

> 0 be so small that for every point z 6 C there exist at least three different 

periodic points a, b, c E C whose forward trajectories do not intersect the ball 

B ( - , O .  
(a) If there exists a sequence nh = nk(z) ~ oo and 0 < ~l(z) < ~ such 

that for every k > 1 there exists a holomorphic inverse branch R-~ "~ : 

B ( R  nk (z), ~1 (z)) ~ C such that R-~ ~k (R ~" (z)) = z, then 

(2.2) limsup I(R"')'(~)I = oo. 
k.-..*oo 

Moreover, there exist a constant C4 ~_ 1 (depending on ~l(z)) and a se- 

quence 

{rh(z)}~°=l of positive integers such that limt~oo rk(z) = 0 and 

m(B(z,,~(z))) 
C;I < "'k(z) < C~. 

(b) Suppose that there exist constants C1,C2,C5 > 1 (depending on z ) a n d  

0 < ~2(z) < ~ such that: 
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l.f O < r < ~2(z), then (2.1) holds with v = m or there exists n >_ 1 such 

that 

(2.3) c~ -1 ~ d(R~)'(z)i _< c5 

and such that there exists a unique holomorphic inverse branch 

(2.4) 
m 

RT": B(R"(z),~2(z))  - ,  C 

satisfying R~-"(Rn(z)) = z. 

Then there eySsts a constant Cs > 1 (depending on C1, C2, C5 and ~2(z)) 

such that for every 0 < r < 1 

m(BCz, r)) 
C~-1< r'(z) <V6. 

Remark: Lemma 2.4(b) is the essential assertion used later on. The formulation 

here is somewhat complicated, but it will be used exactly in this form in Lemma 

3.7 below, when we show that  for each z and r at least one of the two assumptions 

is satisfied. Certainly, (2.3) and (2.4) imply (2.1), but we need a uniform constant 

C6 and therefore have chosen this formulation. | 

Proof: (a) Passing to a subsequence one can suppose that for some y • J (R)  

and for every k ~ 1 

lira R"k(z)  = y, 
k---*oo 

(2.5) ly - R"'(~)I < i 

where 7 = ½~1 (z). In view of this B(y, 7) C B ( R  "k (z), 27) and hence the family 

(R-~ "k : B ( y , 7  ) --* C}~°=1 is well defined. Since ~f < ~, it follows from Montel's 

theorem that  this family is normal. Since y E J(T) ,  all the accumulation points 

of this family are constant functions. In particular, 

lira sup ](R -"~) ' (R " '  (z))[ = 0. 
k--*oo 

So, formula (2.2) is proved. 
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In order to prove the other part of (a), take ~ = 7/K, where K = k(1/2) is 

the constant defined in KDT, and put 

rk = rk(z) = I(R-"')'(R"'(z))I¢. 

By the choice of (, applying KDT to the map R~ " k  : B(R "~ (z), 27) ~ C, we get 

S(z, r~) C R-~"' (B(R"' (z), Ki) ) 

and 

B(z, rt) D R'~ "h (B(R "h (z), K- '  ~)). 

Therefore, using (1.1), KDT, and conformaiity of the measure m, we obtain 

m(B(z, rk)) _> K-t](R -"~)'(R"'(z))I'm(B(R " ~  (z), g-t~)) 
>_ g-t(-trtkM(g-l¢) = M(g- '¢)(g()- tr t  t. 

Similarly m(B(z, rk)) <_ (K¢-l)trtt. The proof of part (a) is finished. 

(b) By Lemma 2.3 and the assumption it is sufficient to show that (2.1) holds 

for all r satisfying (2.3) and (2.4). But this follows immediately as in part (a) 

from KDT. | 

3.  V o l u m e  L e m m a s  for  C o n f o r m a l  M e a s u r e s  

Recall that the w-limit set of the set CV(R) of critical values of R : C ~ C is 

defined by 
o o  o o  

~I(R) = N U Rk(CV(R))" 
n = 0  k = n  

In other words z E f/(R) if and only if there exist c E CV(R) and a sequence 

nk Too (k > 1) of positive integers such that z = limk--.oo R"k(c). 
Put 

~,(R) = ~ ( R )  n J (R) .  

From now on we assume that R is a Misiurewicz's (subexpanding) mapping, that  

is, that  RI~(R ) is expanding which means that 

3s > 1 3~' > 1 vz  ~ 0,(R) I (a ' ) ' (z ) l  > ~'. 
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Put T = R ' .  Since w(T) C ~(R),  we also have that for every z E w(T) 

IT'(z)[ >_ A'. 

Hence T is also a Misiurewicz's map and, in particular, Crit(T)Nw(T) = 0. Since 

T r is continuous, there exist 7/> 0 and 1 < A _< AF such that  

(3.1) Vz e B(w(T),2TI) IT'(z)l > A. 

By definition of w(T) there exists p > 1 such that 
co 

(3.2) ~.J T"(CV(T)) C B(w(T),71). 
n----p--1 

Therefore, setting 

[[(T")'I[ -- sup{l(T")'(z)] : z • ~} for n > 1 

and ~ = ~(2]1(TP-1)'11)-1 , we obtain the following. 

LEMMA 3.1: IfZ • J(T), ~ _> p - 1  ~ d  T"(~) ~t B(~(T), 2,), then T"-"+~(z) 
B(U~°=0 Ti(CV(T)),27) and hence there exists a unique holomorph/c inverse 

branch 
TT"+P-1 : B(T'~-v+l(z), 27) ~ C 

such that TT'+,-I(T"-~+I(z)) = z. 

Fix 0 < e < 7/3 so small that the following four conditions (3.3)-(3.6) are 

satisfied: 

(3.3) B(Crit(T),  ~) f3 B(w(T), 2q) = 0, 

there exists A > 1 such that  for every c • Crit(T v) and every z • B(c,2e) 

A -11z - clq <_ [TV(z) - TP(c)I < AIz - clq (3.4) 

and 

(3.5) A - '  Iz - cl q - '  < [ ( T ' ) ' ( z ) l  <_ Alz - cl q - '  

where q = q(c) is the order of T v at the critical point c, and finally 

(3.6) B(c,, 2~) n B(c2, 2~) = 0 

for every two different critical points cl, c2 of T p. 

Define constants a, fl and 0 as in Section 2 for e and the mapping T. These 

constants are fixed throughout the remaining part of the paper. 

Immediately from (3.6) we obtain the following. 
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LEMMA 3.2: There exists 0 < r < 1 such that for every criticM point e of T p 

and every z q B(c, ~) there exists a unique holomorphic inverse branch T I  r : 

B(Tr(z ) ,  r l T r ( z ) -  TP(c)[) --. B(z,7)  such that TFr(TP(z)) = z. 

Let 

(3.7) * --* --2 0 < 6 < min{O,T/,i7rK A } 

be so small that  if z ~ B(Crit(Tr),  e) then there exists a unique holomorphic 

inverse branch T ' r :  B(TP(z),  26) ~ C such that  TIP(TP(z)) = z and 

(3.8) diam(TTr(B(TP(z),  26))) < 7. 

Let 

S = U T-"(Cri t (T)) .  
n = 0  

Next we prove the following result which has some preliminary geometric conse- 

quences. 

LEMMA 3.3: If  z 6 J (T)  \ S then 

(3.9) lira sup I(T")'(z)l = eo. 
n-=~OO 

Moreover, there exists a sequence {rk(z)}~°=z of positive integers such that 

lim~--.oo rk(z) = 0 and such that the fo//owing holds: 

If  m is a t-conformal measure for T : J (T)  ~ J(T) ,  then there exists a constant 

C7 > 1 (not depending on z) such that for every k > 1 

(3.Z0) C; ~ _< m(B(z, rk(z))) < C~. 

Proof." We only need to check that the assumptions of Lemma 2.4(a) are satisfied 

for the point z and that  inf{(,(x) : x E J (T)  \ S} > 0. To this end let 

2V(z) = {n >_ p: T"(z) ~ B(w(T), 2~/)}. 

Suppose first that  the set iN(z) is infinite and let {rt~ + p - 1}~°=1 be the se- 

quence of consecutive elements of iN(z). Then, in view of Lemma 3.1, there 

exists a unique holomorphic inverse branch T7 "~ : B ( T  "~ (z), 27) --+ C such that  
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Tz --n' (The(z)) = z. Thus putting ~l(z) = rain{27, ~} we see that  in this ease the 

assumptions of Lemma 2.4(a) are satisfied. 

Suppose now that iN(z) is finite and let i > max IV(z). Since z ¢ S, there 

exist a > 0 and a unique holomorphic inverse branch T~ -i : B(Ti(z) ,  a) --~ 

such that  T;-i(Ti(z)) = z. By (3.1), (3.3) and Lemma 2.2 for every j > 1 there 

exists a unique holomorphie inverse branch T/--j : B(Ti+J(z), 20) ~ C such that 

T~-i(Ti+J(z)) = Ti(z). In view of (3.3) and KDT for every j sufficiently large, 

diam(T['i(B(Ti+J(z), 0))) < a. Therefore, for these j ,  the composition T~ -i oTf -j 

is well defined on B(Ti+i(z),O) and so, setting ~l(z) = min{0,~}, we conclude 

that the assumptions of Lemma 2.4(a) are again satisfied. Hence the remark that 

inf{~l(x) : z e J ( T ) \  S} = min{27,0,~} > 0 

finishes the proof. | 

In a standard way one can apply the Besicovi~ Covering Theorem (as in [15], 

[16], [5], for example). Because of this, the previous lemma, J(R)  = J(T)  and 

since any t-conformal measure for R : J(R)  --* J(R)  is also t-conformal for 

T :  J (T)  ~ J(T),  the following results hold. 

COROLLARY 3.4: Every two t-conformal measures ml and m2 are equivalent on 

the set J(R)  \ S. More precisely, there exists a constant Cs > 1 (depending, 

on ml and m2) such that C~lml (A)  < m2(A) < Csml(A) for every Bore1 set 

A c S(R) \ S. 

Since (3.10) only holds for some radii, we cannot conclude at this point that 

a t-conformal measure and the t-dimensional Hausdorlf measure are equivalent. 

However, we obtain the following preliminary result. 

COROLLARY 3.5: Lie m is a t-conforraal measure for R : J(R)  ~ J(R)  and Fit 

is the t-dimensional Hausdorff measure on J( R), then tit << m. Moreover, the 

Radon-Nikodym derivative d H j  dm is bounded. 

LEMMA 3.6: / / 'ml is a tl -conforma/measure, m2 is a t2-conformal measure with 

tl < t2, then m2(J(R) \ S) = O. 

Now we shall prove the key lemma of the paper. 

LEMMA 3.7: I f  m is a nonatomic t-conformal measure for R : J(R)  --* J(R),  

then there exists a constant 6'9 > 1 such that for every z E J(R)  and every 
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0 < r < _ l  

(3.11) C~-' < m(B(z , r ) )  < C9. 
- -  r t  - -  

Proof." First of all note that J(R)  = J(T)  and that m is also t-conformal for 

T : J (T)  ~ J(T).  Hence, in this proof we will always be dealing with the 

iteration T. For any z E J(T)  let Cg(z) > 1 be the minimal constant such that 

(3.11) is satisfied. We need to prove that Cg(z) is finite for every z E J(T)  and, 

moreover, that sup{Cg(z) : z e J(T)} < oo. The proof consists of several steps. 

Steps 1 and 2 deal with two special cases and are used later in the proof. In Step 

3 it will be shown that (3.11) holds for z E Crit(TP), more precisely that the 

hypothesis (2.1) in Lemma 2.4(5) holds for any r, where the constants do not 

depend on z. If z @ Crit(T v) and r is given, we show in Steps 4 and 5 that at least 

one of the hypotheses of Lemma 2.4(b) is satisfied, where again the constants do 

not depend on z. Then Lemma 2.4(5) proves (3.11). 

STEP 1: Let z be a point whose forward trajectory 

{T"(z)  : n >_ 0} C B(w(T),  2,1). 

By (3.3) z ~ S, and hence Lemma 3.3, (3.9) applies. Also, by (3.1) and (3.3), 

Lemma 2.2 applies. In view of these two lemmas the hypotheses of Lemma 2.4(b) 

are satisfied with ~2(z) = 28 and Ch(z) = IIT'II. Moreover, formula (3.11) holds 

for z where the constant Cg(z) < oo does not depend on z. 

STEP 2: Suppose that z E Crit(T). 

Then z E Crit(T p) and it follows from (3.2) that 

{TP(z), Tr+ ' ( z ) , . . . }  C B(w(T),  2'1). 

Note (see [9], for example) that there exist 0 < p < 1 and conformal home- 

omorphisms hi : B(0, 2p) ~ C and h2 : B(0, 2p) ~ C such that hi(0) = z, 

h2(0) = TP(z) and 

TP(h,(x))  = h2(x')  

where q > 2 is the order of T v at the point z. 

Define finite Borel measures ml and m2 on B(0, p) by 

[(h'~l)'ltdm, m,(A) = ~ [(h~')'ltdra (3.12) rot(A) = I(A) ~(A) 
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for a measurable set A C B(0, p). Using the chain rule and the properties of the 

conformal measure m it is easy to check that 

(3.13) m2(A q) = qt /A ]xq-1 it dml(x)  

for every Borel set A C B(0, p) on which the map x ~-* zq is injective, where A s 

denotes the image of the set A under the map x ~-+ zq. 

Note that  Step 1 applies to TP(z), hence, since ]h~(0)] ~ 0, oo, it follows from 

KDT that  

(3.14) c~ol < m2(B(O,r)) < Cio 
- -  r t - -  

for every 0 < r < p and some constant C10 _> 1. 

Fix now any 0 < v < 1. For every 0 < r < p and every j -- 0 , 1 , . . . ,  q - 1 let 

and 

Ri(r  ) = {beiS : ' v / -~  <_ b < r and 2~rj/q < 0 < 27r(j + 1)/q}. 

Note that  the map x ~-* xq is injective on Rj(r) ,  the sets Rj(r) are mutually 

disjoint, 

R(' ~v::~,~) = R0(r) U. - .  u R,_,(r)  and (R~(r))' = R(vr' ,r') .  

Therefore by (3.13) and (3.14) 

qC~olr ,, ( qm2(B(O, rq)) = qt ~ izq-~l,dm~(z) _< q,r(q-D,ml(B(O,r)) 
(o,r) 

and 
¢--1 

qClor" >_ qm2(R(~,r',r')) = Z q' JR ) : - '  I' dm,(x) 
1=o j(r) 

q--1 

~_ ~_~(qtqv/-~)(q-1)tml(Rj(r)) --_ qty(q-l)t/qr(q-1)tml(R(q y~/'~,r)). 
j=o 

Hence 

~(B(O,r)) _~ c~o~ q~_ , 
(3.15) r '  
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and 

Since m has no atoms, also ml is nonatomic. Thus, setting 

Cn = Cloql-tv (q-l)~l*, 

we obtain that 
oo 

TnI (B(0  , r ) )  = ~Ft I ( U R( (qVfv )n+l r '  (q~/r~)nr)) 
n=O 

oo 
= 

n--=0 
oO 

1 
_< _< c,1 ' 

1 - (gV~) '" 
n----O 

Therefore, as the set of critical points of T is finite, applying (3.15), (3.12) and 

KDT, we conclude that (3.11) is satisfied for any critical point z. 

STEP 3: Let z 6 Crit(TP). 

Let 0 < i < p - 1  be the smallest integer such that Ti(z) 6 Crit(T). Hence there 

exist a > 0 and a unique holomorphic inverse branch T7 i : B(Ti(z),  a) -* 
sending Ti(z) to z. Therefore, as the set of critical points of T p is finite, an 

application of Step 2 and KDT shows that condition (2.1) is satisfied for any r. 

In particular, (3.11) holds for any critical point of T p. 

STEP 4: Let 0 < r < 1 and z 6 J(T) \ Crit(T p) such that 

rl(T")'(z)l < 1 

for every n > 0. 

It follows from formula (3.9) of Lemma 3.3 that z 6 S. Let k > 0 be the 

smallest integer such that T~(z) 6 Crit(T). Since z ~ Crit(TP), there exists 

l _> 1 such that TP-*(Tt(z)) = Tk(z). Moreover, since Tt(z)  ~ B(w(T),2~?), it 

follows from Lemma 3.1 that there exists a unique holomorphic inverse branch 

TTl:  B(TZ(z), 27) ~ C such that T~-Z(TZ(z)) = z. But 

(TP)'(Tl(z)) = (T v-1)'(Tt(z)) • T'(Tk(z)) = 0 

and therefore an application of Step 3 to Tl(z) and KDT shows that the hypoth- 

esis (2.1) holds for this r and this z. 
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STEP 5: Let 0 < r < JIT'H -p+I and z ~_ Crit(T p) such that 

(3.16) rl(T")'(z)l > 1 

for some n >__ 1. 

Fix a minimal n satisfying (3.16). Since r < IIT'II -p+' ,  n > p and 

(3.17) rl(T")'(z)l < IIT'II. 

207 

CASE (a): Assume that Tn(z) ~ B(w(T),2~/). 
Hence, in view of Lemma 3.1, there exists a holomorphic inverse branch 

TIn+P -1 : B(T"-P+](z), 27) --~ C which sends the point T"-P+I(z) to the point 

z. In order to show the hypothesis of Lemma 2.4 (b), (2.3), for n - p + 1, it 

suffices to note that  I(TV-1)'(T"-P+I(z))I <_ IIT'll p-'  and, as n is the smallest 

integer satisfying (3.17), [(Tp-1)'(Tn-V+l(z))l > 1. 

CASE (b): Assume that Tn(z) • B(w(T),2TI). 
Let k > 0 be the smallest integer such that 

{Tk(z), Tk+l(z) , . . . ,  T"(z)} C B(w(T), 2T/). 

CASE (bl):  k = 0. In this case Step 1 applies. 

CASE (b2): k > 1. Let 

l = max{0, k - p}. 

Thus by (3.1), (3.3) and Lemma 2.2 (and (3.7)) there exists a unique holo- 

morphic inverse branch T~ -"+t+p : B(T"(z),26) ---, B(TZ+V(z),2,5) such that 

T~'n+t+P(T"(z)) = Tt+P(z). 

CASE (b2o0: Suppose that 

Tt(z) • B(Crit(TP),e). 

Then (see (3.7) and (3.8)) there exists a unique holomorphic inverse branch 

T~P : B(T'+P(z), 2~) ~ C such that T~'P(T:+V(z)) = Tt(z). 
If I = 0 then the composition T2 -p o T~ - '+ t+p : B(T"(z), 2~) ~ C is a holo- 

morphic inverse branch which sends Tn(z) to z. Moreover, (2.3) holds because 

of (3.16) and (3.17). 
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If I > I then I = k - p  and k -  1 > p -  1. Moreover, since T s'-' (z) q~ B(w(T), 2,/), 

it follows from Lemma 3.1 that there exists a holomorphic inverse branch T7  t : 

B(Tl(z), 27) --* C such that T~-i(Tt(z)) = z. By (3.8) the following composition 

T: '  o T~ p o T1 - '+ t+p  : B(T"(z),  26) ---* C is well defined and sends T"(z) to z. 

Again, (2.3) follows from (3.16) and (3.17). 

CASZ (b2/3): Suppose that 

T'(z) • B(c,e) 

for some c E Crit(TV). 

Put  p = ]TP(Tt(z)) - TP(c)] and suppose that 

rp[(T"-'-v)'(TP(T'(z)))] >_ K6, 

where 7" is given by Lemma 3.2. Then by KDT 

T~"+'+P(B(T"(z), 6)) C B(TV(T'(z)), rp).  

Hence the composition T[ -v o T~"+'+v : B(T"(z),  6) ~ e sending T"(z) to T'(z) 
is well defined, where Tt --p : B(Tt+V(z), rp) --* B(Tl(z),7) is a holomorphic 

inverse branch sending T:+P(z) to T:(z), which exists in view of Lemma 3.2. 

If I = 0 we are done in view of (3.16) and (3.17). 

If I > I then l = k - p. Since moreover T k-1 (z) ~ B@(T), 2,/), it follows from 

Lemma 3.1 that there exists a holomorphic inverse branch T7  z : B(Tt(z), 27) 

such that TTi(Tl(z)) = z. Hence the composition 

T~-' o Tt -p o T~ '+ '+P : B(T' (z ) ,  6) ~ C 

satisfies T 7' o T~ -p o T~"+P+'(T"(z)) = z and (2.3) follows again from (3.16) and 

(3.17). 
Finally, let 

rpI(T"-t-P)'(TP(TI(z)))I < g6. 

Putt ing ~ = [T'(z) - c[, (3.4) implies then that 

(3.18) < K6. 
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But in view of (3.16) and (3.5) 

rl(Tt)'(z)lA~ q-1 [(Tn-I-P)'(TP+I+1(z))[ > 1 

and, multiplying both sides of this inequality by a,  using (3.18) and (3.7) we get 

a < r-lg~A2r[(Tt)'(z)] < ~/r[(Tt)'(z)[, 

which implies that 

(3.19) B(T'(z),  ~'yrlCT')'Cz)l) C BCc, ]~rlCTZ)'Cz)l) C BCT'(z),'rrlCT')'(z)l). 

In view of (3.16) and the minimality of n 

(3.20) -rrl(T~)'(z)l < % 

Therefore, if I = 0, applying the results of Step 3 for c gives 

m ( B ( z ,  1 ,~ ~ 2_ , t  r ,  ~ r ) )  < , ~ 2 ~ j  

and 
- - 1 2  t f 

with some constant C12 >_ 1. Thus (2.1) is satisfied in this case. 

If I _~ 1 then l = k - p. Since moreover T k-~ (z) q~ B(w(T), 2~), it follows from 

Lemma 3.1 that there exists a holomorphic inverse branch T, -I  : B(Tl(z), 2~/) 

sum that T;a(Ta(~)) = z. Using (3.19), (3.20), the ~es~t of Step 3 for c and 
KDT we conclude that 

and 

m(B(z,  1 -I ~K 7r)) _< C13(~K~f)tr t 

-1  2 - 1  t t m(B(z ,K~r))  > C13 (SK S) 

for some constant C13 _> 1. Thus (2.1) is satisfied. | 

Remark: Note that arguments used in Case (b2~) are similar to those contained 

in §2 "Telescope Lemma" of [13]. | 
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4. Hausdorff  Measures  for Subexpanding  Rational  Maps  

The results in the previous section imply a few results on Hausdorff and eonformal 

measures, as well as on absolutely continuous R-invariant measures, which we 

collect in this section. 

In a standard way one can apply the Besicovi~ Covering Theorem (as in [15], 

[16], [5]) observing that J (R)  = J (T)  and that any t-conformal measure for 

R : J (R )  ---} J (R)  is also t-conformal for T : J(T)  ---} J (T) .  From this and 

Lemma 3.7 one obtains 

THEOREM 4.1: I f  m is a nonatomic t-conformal measure for R : C ---} C and if 

Ht is the t-climensional Hausdorff measure on J( R), then the measures m and Ht 

are equivalent with bounded Radon-Nikodym derivatives. 

In order to obtain information about Hausdorff measures I-It, we need to know 

that a nonatomic t-conformal measure exists. This is shown in the following. 

THEOREM 4.2: Let h denote the Hausdorff dimension of J( R). Then there exSsts 

a nonatomic h-conformal measure m for R : C ---} C. Moreover, each other h- 

conformM measure is equivalent to m. 

Proof'. In view of Corollary 3.4, in order to prove the theorem, it is enough to 

show the existence of a nonatomic h-conformM measure m. In [7] (Lemma 5.3, 

Theorem 2.3 and the proof of Lemma 5.4) we have constructed a sequence of 

• oo J (R)  and a sequence {h/}~= 1 of positive reals probability measures {mj }j=1 on 

with the following properties (among others): 

(4.1) mj  R-" (Cr i t (R  = 0, 

mj(R(A)) > fA IR'lh  (4.2) dmj 

for every set A C J (R)  such that RIA is injective and 

(4.3) s = lira sup hj _< h. 
].--*oo 

Let the measure m be defined as a weak accumulation point of the measures mj.  

It is shown in [7] (Lemma 5.3, Corollary 5.7, Lemma 5.8 and Theorem 2.3) that 
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for Misiurewicz's maps this measure is s-conformal. Therefore, in view of (4.3) 

and Corollary 3.5, s = h. 

Let T be as in Section 3. Let f(r) = l imsupj_.~mj(B(c,r)) ,  where c E 

Crit(T p) and r > 0. We shall show that 

(4.4) lim f ( r )  = 0. 
r--*0 

Indeed, it follows from (4.2) that mj(T(A)) >_ fA [T'I h~ dmi for every set A C 

J(T) = J(R) such that T]A is injective. Therefore, as by (4.1) mj(c) = 0 for 

every j >_ 1, in exactly the same way as in Steps 1-3 of the proof of Lemma 3.7 

one shows that there exists C14 _> 1 (not depending on j )  such that 

mAB(c, r)) < C14  

for every 0 < r < 1. This finishes the proof of (4.4). But (4.4) immediately 

implies that m(Crit(TP)) = 0. Thus m(U~= 0 R-" (Cr i t (R) ) )  = 0. Since, in view 

of (3.9) (the first claim in Lemma 3.3), no other point can be an atom of rn, the 

proof of Theorem 4.2 is finished. | 

Remark: It follows immediately from Corollary 3.5 that there are no t-cordormal 

measures with t < h. From Lemma 3.6 and Theorem 4.2 one sees that there are 

no nonatomic ¢-conformal measures with t > h. However, it turns out that  there 

are purely atomic, t-conformal measures for g > h (necessarily concentrated on 

preimages of critical points). | 

As an immediate consequence of Theorem 4.1, Theorem 4.2 and Lemma 3.7 

we get the following. 

THEOREM 4.3:  If h denotes the Hausdorff dimension of J(R), then 0 < h < oo 

and h = bD(J(R)) .  

The first part of Theorem 4.3 follows from Theorems 4.1 and 4.2. Lemma 3.7 

was used to derive Theorems 4.1 and its proof to derive Theorem 4.2. Besides 

this, to get the equality h = bD(J(R))  we need to apply Lemma 3.7 directly. 

Applying also Corollary 3.5 and the main result of [7] we obtain the following. 

COROLLARY 4.4: h = 6o(R) = 6(R) = s(R) = dD(J(R)), where all these num- 

bers have been de/]ned in [7]. 

We conclude this paper with some remarks about R-invariant probability mea- 

sures which are absolutely continuous with respect to an h-conformal measure 

m. First we have the following. 
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PROPOSITION 4.5: If  m is an h-conformM measure for R : C ~ C then 

m(~,(a)) = 0. 

Proo£- First note that the classical Lebesgue Density Theorem holds for locally 

finite measures v on JR d (an easy consequence of the Besicovi~ Covering Theo- 

rem), i.e. if A C JR d is a bounded Borel set with v(A) < oo, then there exists a 

Borel set A0 C A with v(A0) = v(A) such that for z E A0 

n = 1. 

Using this, Lemma 3 in [10] also holds for the conformal measure m. Hence 

m(~o(R)) E {0,1}. Now, every forward invariant proper subset of J(R) is nowhere 

dense in J(R) (this follows from topological exactness of RIj(R)). 

Since a conformal measure is positive on open sets, it follows that m(w(R)) = O. 

I 

THEOREM 4.6: Let h denote the Hausdorff dimension of J(R). Then there 

exists a unique, ergodJc, R-invariant probability measure p, equlva/ent to the 

h-conformal measure m. 

ProoL" Let 
1 n- - |  

p,  = n ~ o m  

and let p denote a weak accumulation point of the sequence {p,,}. Then p is R- 

invariant and it is left to show that p is equivalent to m. Since m is h-conformal 

the proof of Theorem 3 in [10] also works in the present situation, once Lemma 

6 in [10] is established. Moreover, the proof of Lemma 6 also carries over in the 

present situation, except formula (9) in [10]. However, the corresponding version 

of this formula for the measure m can be obtained with arguments used in Step 2 

of Lemma 3.7, since m is nonatomic. 

Similarly as in [10] one can prove that p is metrically exact, in particular 

ergodic, and therefore unique. I 

It follows from Theorem 4.1 and Theorem 4.2 that m is equivalent to Hh and 

an easy computation shows that the Radon-Nikodym derivative ~b = dm/dI'Ih 

satisfies the equality 

 (RCz)) = ¢(z) 
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for m-almost  every point z E J (T) .  Therefore, it follows from ergodicity of p 

that  @ is m-a.e, constant and we get the following. 

THEOREM 4.7: Let h denote the Hausdorff dimension of  J (R) .  Then the nor- 

realized h-dimensional Hausdorff  measure Hh on J ( R )  is the only h-conforma/ 

measure /or  R : C --~ C. 
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